Magnetostrictive Actuator

Randall Bateman, Aaron Bolyen, Chris Cleland Alex Lerma, Xavier Petty, and Michael Roper Department of Mechanical Engineering

April 29, 2016

Overview

- Introduction
- Problem Description
 - Project Need & Goal
 - o Objectives
 - o Constraints
 - Criteria for Design Selection
- Selected Components
- Proof of Concept

- Final Design
 - $\circ~$ Exploded View
 - Prototype Fabrication
 - Design Modifications
 - Completed Prototype
- Performance Testing
- Recommended Alternatives to Design
- Bill of Materials
- Conclusions

Introduction

- Honeywell Aerospace designs and manufactures numerous products and services for the commercial and military aircraft industry
- Honeywell contacts initiating the project are Michael McCollum, the Chief Engineer of Pneumatic Controls Technology and Mitchell Thune, a recent NAU graduate who is working with Michael McCollum on this project
- The clients want to replace their electromagnetic solenoid with a magnetostrictive material, Terfenol-D, in the pneumatic control systems used on commercial airliners
- Terfenol-D is a magnetic shape memory alloy that elongates when an external magnetic field is applied

Problem Description

- Determine the feasibility of using Terfenol-D in aircraft valve systems by designing and constructing a prototype actuator
- Identify a solution to hysteresis in the magnetostrictive material
- Create a lever system to produce a 1:10 input to output stroke

Project Need

 Currently, there are no feasible actuators for aircraft valve systems using the magnetostrictive material Terfenol-D

Project Goal

 Develop a viable actuator that utilizes the magnetostrictive properties of Terfenol-D

Objectives

Objective	Measurables	Units
Decrease Hysteresis	Stroke Loss	in/in
Strengthen Magnetic Field	Magnetic Field Strength	A/m*
Increase Output Stroke	Distance	in
Measure Output Force	Force	lbf
Reduce Operation Time	Time	ms
Maximize Work Per Unit Weight	Work, Weight	(lbf∙in)/lbf

*All magnetic and electric measurements use S.I. units

Constraints

- At least 25lb of force exerted
- Need at least 0.03in stroke (based off of 3in length rod)
- Must cost less than \$5000
- Must be smaller than 3 x 5 x 12in
- Coefficients of thermal expansion must be balanced throughout device
- System must be cooler than 500°F
- Greater than or equal to 1:10 ratio of input to output distances

Criteria for Selection

Power Source

Capacity Voltage Cost Weight Dimensions

Solenoid

Conductive material Usable magnetic field Cost Weight Size Heat dissipation

Housing

Compact Weight Strength Heat dissipation Safety Non-magnetic

Magnetostrictive Core

Strain Cost Output force Hysteresis Modulus of elasticity

Lever

Modulus of elasticity Output stroke Durability Non-magnetic Dimensions

Hysteresis Control

Reliability Force output Non-magnetic Dimensions Cost

Selected Components

- Power Source: Wall outlet
- Housing: Aluminum cylinder
- Core Geometry: Cylindrical rod
- Solenoid: Copper wire surrounding Terfenol-D core
- Lever System: Linear hydraulic lever
- Hysteresis Control: Pre-stress bolts

Proof of Concept

- Design coil to generate a magnetic field
 - **30mT**
 - 2A
 - **12V**
- Prove that the small stroke can be amplified and measured
 - 75µm converted to ~1.125mm

Exploded View

Prototype Fabrication

Core Setup

Brass Pre-stress bolts

Aluminum Endcap

Small Piston

Aluminum Housing

Large Piston

Prototype Fabrication

Core Stops

Steel Impact Plate

Heat Fitting

Design Modifications

- Two brass pre-stress bolts instead of four steel bolts
- Smaller pre-stress bolt diameter
- Stainless steel impact plate on large piston
- Iron core assembly moved inside endcap for support
- Heat fit iron washer inside the iron cylinder
- Bleeder valve inserted into fluid chamber
- Chamfer angle in fluid chamber changed from 45° to 60°

Completed Prototype

Core Assembly

Complete Assembly

Performance Testing

- Electric Circuit Testing (Magnetic Field Data/Solenoid)
 - o Current, voltage, and resistance measurements across circuit
 - o Multimeter
- Thermal Output Testing
 - Simulation: ANSYS Workbench used to find temperature distribution and maximum possible values
- Magnetic Field Testing
 - Magnetic field experienced by the Terfenol-D
 - o Gauss Meter

Electrical Results

- Coil circuit data
 - Expected Values
 - 120V
 - 1.2A
 - 94Ω
 - \circ Measured Values
 - 125V
 - 0.72A
 - 96Ω

Magnetic Field Results

- Location: Center of Solenoid
- Calculated
 - o 107.5mT minimum
- Measured
 - o **153mT**
 - Concentrated by iron casing and iron core stop

Thermal Results

- Heat Testing
 - ANSYS Workbench was used to simulate a simplified temperature distribution for the device. Thin layers of insulation are added at key points to reduce the temperature near the fluid chamber

Performance Testing

- Stroke Output Testing
 - No loads applied: testing the Terfenol-D's reaction to the applied magnetic field
 - Loads applied: testing the Terfenol-D's reaction with hysteresis control in place
 - Total device output: testing the stroke magnification due to the hydraulic chamber
 - Digital Dial Indicator

Stroke Output Results

- Unloaded, 125V
 - $\circ~$ Without a lever system: ~30 μm
- Loaded, 125V
 - Without a lever system: ~60µm
 - With lever system: ~960µm
 - o 1:16 ratio

Recommended Alternatives to Design

- Using Cenospheres instead of hydraulic fluid
 - Implement hourglass shape chamfer inside fluid chamber
- Replace bolts with an elastic cable
 - Use locking hooks to attach cable
- Experiment with Terfenol-D powder to create a ferrofluid
- Use a direct current power source

Bill of Materials

Item	Individual Cost (\$)	Quantity	Total Cost (\$)
Aluminum	41.52	2	83.04
Iron Tube	138.00	1	138.00
Iron Rod	171.00	1	171.00
Solenoid	790.00	1	790.00
Brass	10.97	1	10.97
Terfenol-D	447.00	1	447.00
Large Seal	5.56	1	5.56
Small Seal	3.94	1	3.94
Brake Fluid	9.95	1	9.95
	Total Cost*		1672.01

*Estimated without shipping costs, taxes, and manufacturing costs

Conclusions

- Honeywell International Inc. tasked the team with designing and prototyping an actuator that utilizes Terfenol-D, a magnetic shape memory alloy that elongates in response to the application of a magnetic field
- Modifications have been made to the original prototype design in order to resolve issues that arose before construction and account for stresses and dimension restrictions
- An actuator that utilizes a magnetostrictive material, Terfenol-D has been constructed. The actuator creates a minute stroke using a magnetic field

Conclusions

- Design modifications were made to improve manufacturability and assembly
- We have not exceeded our budget requirement
- Performance analyses have demonstrated that magnetic field is produced, stroke is amplified, and the experienced heat generation is acceptable

Acknowledgements

- Honeywell Contacts
 - o Mr. Mitch Thune
 - o Mr. Mike McCollum
 - o Mr. Mike Downey
- NAU Staff Consultants
 - Dr. Srinivas Kosaraju
 - Dr. Constantin Ciocanel
 - o Dr. Sagnik Mazumdar
 - Professor John Sharber
 - Mr. Christopher Temme
- NAU Fabrication Shop
 - Mr. Tom Cothrun

References

R. Budynas, J. Nisbett and J. Shigley, Shigley's mechanical engineering design. New York: McGraw-Hill, 2011.

- ETREMA Products, Inc., 'Terfenol-D-ETREMA Products, Inc.',2015. [Online]. Available:http://www.etrema .com/terfenol-d. [Accessed: 1-Dec-2015].
- M. McCollum, 'Solenoid Design: Pneumatic Controls Engineering Lecture 9', Online.
- H. Roters, *Electromagnetic Devices*. New York: John Wiley & Sons, Inc, 1941.
- R. Fox, R. Fox, P. Pritchard and A. McDonald, *Fox and McDonald's introduction to fluid mechanics*, 8th ed. Hoboken, NJ: John Wiley & Sons, Inc., 2011.
- M. Dapino and S. Chakrabarti, 'Modeling of 3D Magnetostrictive Systems with Application to Galfenol and Terfenol-D Actuators', *Advances in Science and Technology*, vol. 77, pp. 11-28, 2012.
- B. Bhattacharya, 'Terfenol and Galfenols: Smart Magnetostrictive Metals for Intelligent Transduction', *iitk.ac.in.* [Online]. Available: http://www.iitk.ac.in/directions/dirnet7/P~BISHAKH~F~DIR7.pdf. [Accessed: 23- Sep- 2015].
- D. Son and Y. Cho, 'Under Water Sonar Transducer Using Terfenol D Magnetostrictive Material', *Journal of Magnetics*, vol. 4, no. 3, pp. 98-101, 1999.

Questions?

